Microtubule Polymerization and Cross-Link Dynamics Explain Axonal Stiffness and Damage.

نویسندگان

  • Rijk de Rooij
  • Ellen Kuhl
چکیده

Axonal damage is a critical indicator for traumatic effects of physical impact to the brain. However, the precise mechanisms of axonal damage are still unclear. Here, we establish a mechanistic and highly dynamic model of the axon to explore the evolution of damage in response to physical forces. Our axon model consists of a bundle of dynamically polymerizing and depolymerizing microtubules connected by dynamically detaching and reattaching cross-links. Although the probability of cross-link attachment depends exclusively on thermal fluctuations, the probability of detachment increases in the presence of physical forces. We systematically probe the landscape of axonal stretch and stretch rate and characterize the overall axonal force, stiffness, and damage as a direct result of the interplay between microtubule and cross-link dynamics. Our simulations reveal that slow loading is dominated by cross-link dynamics, a net reduction of cross-links, and a gradual accumulation of damage, whereas fast loading is dominated by cross-link deformations, a rapid increase in stretch, and an immediate risk of rupture. Microtubule polymerization and depolymerization decrease the overall axonal stiffness, but do not affect the evolution of damage at timescales relevant to axonal failure. Our study explains different failure mechanisms in the axon as emergent properties of microtubule polymerization, cross-link dynamics, and physical forces. We anticipate that our model will provide insight into causal relations by which molecular mechanisms determine the timeline and severity of axon damage after a physical impact to the brain.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Axonal force, stiffness, and damage as emergent properties of microtubule polymerization, crosslink dynamics, and physical forces

Axonal damage is a critical indicator for traumatic effects of physical impact to the brain. However, the precise mechanisms of axonal damage are still unclear. Here we establish a mechanistic and highly dynamic model of the axon to explore the evolution of damage in response to physical forces. Our axon model consists of a bundle of dynamically polymerizing and depolymerizing microtubules conn...

متن کامل

Computational modeling of axonal microtubule bundles under tension.

Microtubule bundles cross-linked by tau protein serve a variety of neurological functions including maintaining mechanical integrity of the axon, promoting axonal growth, and facilitating cargo transport. It has been observed that axonal damage in traumatic brain injury leads to bundle disorientation, loss of axonal viability, and cognitive impairment. This study investigates the initial mechan...

متن کامل

Drosophila Ringmaker regulates microtubule stabilization and axonal extension during embryonic development.

Axonal growth and targeting are fundamental to the organization of the nervous system, and require active engagement of the cytoskeleton. Polymerization and stabilization of axonal microtubules is central to axonal growth and maturation of neuronal connectivity. Studies have suggested that members of the tubulin polymerization promoting protein (TPPP, also known as P25α) family are involved in ...

متن کامل

CNP/cGMP signaling regulates axon branching and growth by modulating microtubule polymerization.

The peptide hormone CNP has recently been found to positively regulate axon branching and growth via activation of cGMP signaling in embryonic dorsal root ganglion (DRG) neurons, but the cellular mechanisms mediating the regulation of these developmental processes have not been established. In this study, we provide evidence linking CNP/cGMP signaling to microtubule dynamics via the microtubule...

متن کامل

Tubulin transport in neurons

A question of broad importance in cellular neurobiology has been, how is microtubule cytoskeleton of the axon organized? It is of particular interest because of the history of conflicting results concerning the form in which tubulin is transported in the axon. While many studies indicate a stationary nature of axonal microtubules, a recent series of experiments reports that microtubules are rec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biophysical journal

دوره 114 1  شماره 

صفحات  -

تاریخ انتشار 2018